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A blob of Newtonian fluid is sandwiched in the narrow gap between two plane 
parallel surfaces so that, a t  some initial instant, its plan-view occupies a simply 
connected domain Do. Further fluid, with the same material properties, is 
injected into the gap at  some fixed point within Do, so that the blob begins to 
grow in size. The domain D occupied by the fluid at  some subsequent time is to 
be determined. 

It is shown that the growth is controlled by the existence of an infinite number 
of invariants of the motion, which are of a purely geometric character. For 
sufficiently simple initial domains Do these allow the problem to be reduced to 
the solution of a finite system of algebraic equations. For more complex initial 
domains an approximation scheme leads to a similar system of equations to 
be solved. 

1. Introduction 
One of the basic manufacturing processes used in the plastics industry is that 

of injection moulding. Molten polymer is forced into a mould of an appropriate 
shape through a strategically placed hole, and subsequently allowed to solidify. 
As a simple example, one might consider the production of a plane lamina: the 
hollow of the mould would consist of the narrow gap between two parallel planes, 
with side-wall boundaries enclosing a void whose plan-form coincided with 
that of the required lamina. In order to reduce the high pressures needed to force 
the melt into the mould as much as possible, the injection point would normally 
be in one of the plane faces, somewhere near its centre. In  the early stages of 
filling, symmetry considerations suggest that the plan-view of the region occupied 
by melt will be an expanding circle, this situation continuing until the melt 
reaches the nearest side wall and begins to move along it. An analysis of the 
subsequent motion would obviously be complex but, nevertheless, highly 
desirable, For example, the mould can only be filled successfully if, a t  the same 
time, we allow the air to escape, and this must be done through air vents placed 
at those points which will be the last to be filled. How can these points be 
determined, a priori, for a given mould 1 

In  the above industrial situation a large number of complex physical pheno- 
mena are at  work: the high pressures involved imply that compressibility 
effects may be important; the high viscosity of the melt will give rise to sig- 
nificant heat generation and associated thermal effects; and the polymer melt 
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will behave as a non-Newtonian fluid whose relevant rheology we know little 
about. One would, therefore, first of all, wish to consider the same basic problem 
with these complications removed. We replace the polymer melt by an in- 
compressible Newtonian fluid, and assume thermal effects to be negligible. With 
a mould appropriate for a plane lamina, the problem then becomes one of Hele 
Shaw flow with free boundaries, and the simple nature of the equations involved 
encourages one to hope for a satisfactory analytical solution. 

As a preliminary to the above, we here consider the situation when the mould 
is devoid of side walls: the fluid expands into a narrow gap which is of infinite 
extent. Starting with an initially empty channel, one would anticipate the 
trivial solution in which the blob of fluid has a plan-view in the form of an ex- 
panding circle. We, therefore, consider instead that, at  some initial instant, the 
plan occupies some given simply connected domain, and we wish to determine 
the way this domain expands as further fluid is injected at some fixed point in 
its interior. Although the movement of the free boundary is governed by non- 
linear conditions, we are able to show that the motion has an infinite number of 
invariants. Exploiting these, the problem can be reduced to the solution of 
a finite system of algebraic equations, either exactly, for certain simple initial 
domains, or approximately, in general. Thus, in spite of the inherent non- 
linearities, one can successfully predict the shape of the blob at subsequent 
times, given the initial shape. 

Hele Shaw flows with a free boundary have been considered by Saffman & 
Taylor (1958), Taylor & Saffman ( i959) ,  Taylor (1961) and Jacquard & SBguier 
(1962). These authors were primarily concerned with problems arising from flow 
in a porous medium, but exploited the fact that the two physical situations are 
mathematically analogous. The present results may also be interpreted in terms 
of free-boundary flows in a porous medium. 

It is perhaps worth pointing out here that the usual assumptions made to 
analyse two-dimensional problems of electrochemical machining (Krylov i968; 
Fitz-Gerald, McGeough & Marsh 1969; Fitz-Gerald & McGeough 1969, 1970; 
Collett, Hewson-Browne & Windle 1970) also lead to mathematical problems 
identical with those arising from certain Hele Shaw flows with free boundaries. 
The flows considered in the present paper, corresponding to the use of a long, 
thin, cylindrical cathode, have little relevance in the machining context, but 
the analogy could prove useful experimentally in the design of such machine 
tools. 

2. Formulation 
We consider motion in the narrow gap between two parallel planes a distance 

h apart. Take Cartesian co-ordinates (x, y, z"), the x" axis being perpendicular to 
the planes, so that the plan-view of the blob of Newtonian fluid sandwiched 
between them is projected onto the z plane, where z = x+iy. We assume this 
projection to be simply connected and to occupy a domain D of the z plane. We 
take the origin to be the injection point, so that z = 0 is an interior point of D.  
Do will refer to the domain occupied by the blob in the initial state. 



Hele Shaw flows with a free boundary 611 

Away from the injection point and free boundary, we canuse the standard argu- 
ments from the theory of the Hele Shaw cell (see Lamb 1932, p. 582 for example). 
Ignoring gravitational effects, a narrow-gap assumption leads to the conclusion 
that the pressure is independent of x", and that the velocity in the fluid is every- 
where in the direction of the pressure gradient, varying in a parabolic manner 
between the planes. This allows the velocity to be averaged over the depth to 
remove the dependence on 3. The x and y components of this averaged velocity, 
u and v,  are given by 

(2.1) 

where ,u is the viscosity and p the pressure. This is just u = Vq5, where q5 is 
a constant multiple of the pressure, so that the pressure essentially provides 
a velocity potential. Incompressibility implies the existence of a stream function 
$(x, y) for the averaged velocity, so that 

u = (u, V )  = - ( h 2 / 1 2 ~ )  Vp, 

These are the Cauchy-Riemann equations, implying that w(z)  = q5 + i@ is an 
analytic function of x.  In  terms of this complex potential w(z)  we have 

u-iv  = w'(2). (2.3) 

This analysis can be expected to hold only up to distances of order h from the 
injection point and the free boundary. The details near the injection point at the 
origin will depend on the precise mode of filling but, away from its immediate 
vicinity, we can model it as a point source in the flow by requiring 

w(z)  N (&/27r)logz as Iz/ -+ 0, (2.4) 

where Q is the rate of area increase of the blob, this being equal to q/h, where p 
is the volume input rate. 

The situation near the advancing free boundary is complex. First, because of 
meniscus effects, there will be an ambiguity in its position of order h. However, 
for a small gap, such an error will be immaterial. Second, the parabolic velocity 
distribution across the gap must be modified near the boundary. Nevertheless, 
continuity considerations show that the velocity of advance of the boundary 
can be equated to the average velocity u across the gap in that neighbourhood, 
with an expected error of order h. 

A third problem concerns the stress condition to be appliedat the free boundary. 
If surface tension is neglected, one would expect the pressure just inside the 
fluid to equal that just outside, with an error of order h. Surface tension will give 
rise to a pressure drop across this interface which is dependent on its principal 
radii of curvature. However, one of these can be expected to be of order h, while 
the other will be the radius of curvature of the boundary of the domain D.  
Provided that the latter is much larger than h at every point, the pressure drop 
will be essentially independent of the particular point on the boundary. We would, 
therefore, still expect a constant pressure condition to be appropriate. This 
aspect is fully discussed by Saffman &Taylor (1958), Taylor & Saffman (1959), and 
Taylor ( 196 1) whose experiments confirm this assumption, provided the velocities 
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Free boundary 
at time f + b t  

FIGURE 1. Sketch establishing notation for the derivation of the 
kinematic condition at  the free boundary. 

involved are not too small. We therefore impose the condition that the pressure, 
and hence the velocity potential (s, should be a constant on the free surface, and 
we may take this constant to be zero. 

Employing this last assumption, if we know the domain D occupied by the 
blob a t  some time, we can then determine the flow pattern at  that time. Let the 
domain D in the x plane be mapped conformally onto the interior of the unit 
circle in the 5 plane by means of z = f ( g ) ,  where f(5) is analytic within the unit 
circle andf(0) = 0, so that the origins correspond. Defining Q(c) = w{f(<)}, the 
transformed problem in the 5 plane has the solution 

thus determining w(z). 
We now recognize that D, and thereforef(P) = f(Q t ) ,  actually depend on time. 

The velocity at  the boundary, determined by the above solution, gives the rate 
at  which that boundary is advancing. To determine the form taken by this 
kinematic condition we refer to figure 1. Point P ,  a t  position x on the free boundary 
a t  time t ,  corresponds to the point f: on the unit circle under z = f (5 ,  t ) .  The fluid 
velocity at P is perpendicular to the free surface, so that, at time t + at, the point 
P has moved to P‘, where 

an overbar being used to denote the complex conjugate. However, at  time 
t + 6t, the same point 6 on the unit circle corresponds to the point P“, where 

Q(9) = (&/2n) log C, (2.5) 

__ 
PP’ = w’(x) 6t + O(6t2), 

PP“ = (aflat)at+O(St2). 

The projection of PP“ on the direction of PP‘  must be the length of PP‘ to 
O(St),  so that Re{w’(z) af/at} = (w’(x)I2 on the free boundary. Transforming from 
the z plane to the cplane and using ( 2 . 5 ) ,  this boundary condition becomes 

where the primes here denote derivatives with respect to 5. 
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The dependence of the mapping function on time is governed entirely by con- 
dition (2.6). In spite of its apparent complexity, the manner by which it controls 
the growth of the domain D can be expressed in a very simple form. 

3. The moment constants 

CN; N = 0,1 ,2 ,  ..., where the Nth moment constant is defined by 
With the domain D we associate an infinite sequence of moment constants 

Thus C, is simply the area of D, while C,/C, gives the position of its centre of area. 
Using I? to denote the boundary of D and I" to denote the unit circle in the 

5 plane, both traversed in an anticlockwise direction, we can use Green's theorem 
to write C, as a line integral round either of these boundaries. In  fact 

As the domain D expands, we must expect these moment constants to depend 
on time. Differentiation of (3.2) gives 

In  the first term on the right, we integrate by parts, integrating the combination 
qfN-y'. One of the resulting terms cancels with the third term on the right while 
for the other we note that alac = - c2 alac when the differentiation is carried out 
round the unit circle cc = 1. There remains 

using (2.6). 

But f is analytic within I?' and has a simple zero at  the origin, so that the right- 
hand side here takes the value Q for N = 0 and vanishes for N = 1,2 , .  . . . That 
C,, being the area of D, grows at the rate Q is to be expected: the above shows 
that the remaining C, are invariants. The growth is thus controlled by the 
restrictions 

C, = constant in time for N = 1,2 ,3 ,  ... . (3.3) 

Given the initial domain, we can evaluate the initial values of the moment 
constants. At a later time, when the area of the blob has been increased by A, 
the value of C, will have been increased by A,  but the remainder will retain their 
initial values. One thus needs to be able to construct a domain B, given its 
sequence of moment constants. 

In  this form, the problem is reminiscent of the classical moment problems of 
Stieltjes, Hamburger and Hausdorff (see Widder 1946; Akhiezer 1965, for 
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example) and one might pose similar purely mathematical questions. What con- 
ditions on a sequence of complex numbers are necessary and sufficient to ensure 
that a simply connected single-sheeted domain D exists for which they are the 
moment constants? When such a domain exists, is it unique? How does one 
construct the domain from the sequence Z In the present context, however, these 
questions need not concern us, for we know the initial domain Do: we require to 
determine the manner in which continuous changes occur when Co is increased, 
the other moment constants being kept fixed. 

4. Reduction to a functional equation 
We first suppose that the domain is bounded, and enclosed within a circle of 

radius R centred at the origin of the z plane. In fact, this assumption is almost 
essential for the moment constants to be well-defined. Unbounded domains may 
be treated as limiting cases of bounded domains if desired, as in the example of 0 5. 

The definition of C, by (3.1) gives the estimate 

IC,l < RNCO, 

which allows us to assert that the infinite series 

converges for 1.1 > R, and therefore represents, in this region, an analytic 
function of x which vanishes a t  infinity. 

Using the first equality of (3.2) we can, for 1x1 > R, write (4.2) as 

(4.3) 

It now follows that h(z) can, in fact, be continued analytically into the whole of 
the region exterior to D:  the function hfz), initially defined by (4.2) in terms of 
the moment constants, has all its singularities within D.  

We now make the assumption that I’ is an analytic curve, i.e. can be written as 

r: z = g ( z ) ,  (4.4) 

where g(z)  is analytic in a neighbourhood of the curve. Even if we were to pose 
initial conditions with an initial r0 which is not analytic, it is conjectured that 
the curve at  any later time will, in fact, be analytic. A non-analytic initial r0 
can be dealt with by regarding it as the limit of a sequence of analytic curves. 
This assumption is equivalent to requiring that the mapping x = f (6)  from D to 
the unit disk be such that f ( 5 )  is analytic in a neighbourhood of every point of 

where g,(z) is analytic in the interior of I’, while ge(z) is analytic in the exterior 
of I’ and vanishes a t  infinity. Inserting the description of I? given by (4.4) and 
(4.5) into (4.3) we find that 

h(z) = g&). (4.6) 
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We can actually determine g,(z) without having to evaluate all the moment 
constants to give h(z) via (4.2). If we assume that the initial curve To may be 
expressed as 

z = gO(z) = g:(z) +g:(z), (4.7) 

where the decomposition on the right parallels that in (4.5), it follows from (3.3), 
(4.2) and (4.6) that, when the area has been increased by A ,  we shall have 

g&) = 9%) + A / r z .  (4.8) 
We may thus regard g&) as known. 

In  order to have a complete description of the curve I?, we need to determine 
g,(z), orf(Q, from the known function g,(z). To do this we recognize that not every 
analytic function g(z) describes a curve through the prescription (4.4). One can 
easily see that we require g(z) = g-l(z): the conjugate function and the inverse 
function must be identical. This functional relation alone now serves to fix gi(z). 
In  fact, it proves simplest to determinef(6) instead. For this purpose we observe 
that, on the unit circle in the 5 plane, we have 

But the equality between the outer two expressions is an equality between the 
boundary values of analytic functions and is therefore valid throughout any 
domain into which the functions may be analytically continued. The decomposi- 
tion (4.5) allows this functional relation to be written as 

Knowing g,(z), this is to furnish f(6). Since f(5) gives a 1-1 map of 161 < 1 
onto D, and is analytic within the unit circle, it follows that 

(i) the first term on the left is analytic in 161 < 1; 
(ii) the second term on the left has singularities in 161 < 1 whose nature is the 

same as that of the known singularities of g,(z) in D; 
(iii) the term on the right is analytic in 161 2 1 and vanishes at  infinity. 

It follows that the only singularities off( 1/6) are within [ 61 < 1 and that their 
form is identical with those of g,(z). One can therefore, in general, write down the 
form of the mappingf(6). When these singularities are merely poles, a quantitative 
comparison of the singularities in (4.9) will serve to fixf(5) completely by giving 
algebraic relations determining the positions and principal parts of these poles. 
The procedure is illustrated by an example in the next section. 

__;_ 

5. An example 
We consider an initial domain bounded by a circle of radius r ,  the injection 

point being off-centre. We may choose axes so that, with injection at  the origin, 
the centre of the initial circle is at the point z = a, where a is real and positive 
and r > a. This initial curve is 

x = a + r2/(z - a )  = gO(z), (5.1) 
so that 

g:(z) = r”(z - a). 
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From (4.8), it follows that, when the area has been increased by A ,  we have 
r2 A 

x-a rrz g&) = - + - . (5.3) 
__= 

From the functional relation (4.9) it now follows that f (  1/5) has two simple poles, 
one of which is a t  the origin sincef(0) = 0. Since it also has t o  vanish at infinity, 
it must have the form 

whence 

(5.4) 

(5 .5 )  
- 

The principal part off (1/5) at the origin is S/(. 
The principal part of ge{f([)) at  the origin is 

A l l  - 
7T p+a'j. 

Since these must balance in (4.9) we have 

S ( p  + 8) = A/T.  

f( l/[) has a simple pole a t  5 = y with residue p. Ensuring that the simple pole 
of g,{f(C)} is also at  5 = y gives a second relation, while ensuring that the residue 
there is p gives a third. In  fact, thus far the orientation of the circle in the cplane 
has not been specified, so this system of equations does not uniquely determine 
p, y and 6. From the symmetry in this problem we can evidently choose p, y 
and 6 to be real, with 6 

- 

0. The mapping then becomes 

f (5) = P a  1 - y5) + 85, (5 .6)  
with p ,  y and 6 to be determined in terms of A ,  a and r by the system 

Solving these algebraic equations, extracting that solution for which p ,  y and 
6 vary continuously with A from their initial values at  A = 0, gives a domain 
which qualitatively behaves as one would expect; the blob expands, tending 
towards a circular shape centred on the injection point. 

Prom the above, by letting r -+ 00 and a -+ CQ while maintaining r - a = d we 
obtain the result for an initial unbounded blob occupying the half-plane to the 
right of the line x = - d.  In this limit y -+ 1 and we obtain 

f(6) = P5/(1- 5) + 85, (5.8) 
where 

6 = - +d + ( i d 2  + A/%)*, /3 = 2d i- 26. (5.9) 

As A increases, a bulge moves to the left, while for large lyl the free boundary 
remains asymptotic to x = -a, as one would expect. If we contemplate sucking 
fluid out, so that A becomes negative, we see that the above solution can only 
hold down to A = - +mi2. At this stage the free boundary has developed a cusp, 
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and this singularity will persist when more fluid is removed. A solution scheme 
designed to follow this physical situation further must allow for this singularity 
while the present scheme does not. (Physically, the existence of surface tension 
will prevent a cusp from appearing, of course. Before this stage is reached the 
effects discussed earlier will render invalid the constant-pressure assumption 
here employed.) This contrasts with a point mentioned earlier: while injection 
of fluid seems to improve the smoothness properties of the bounding curves, 
suction can produce singularities. We shall not pursue this point, or this par- 
ticular example, here. 

6. An alternative procedure 
When the function g&) has branch points, the solution of the functional 

relation (4.9) is not so easily effected, and the scheme of $ 4  may be impractical 
or impossible. In  any case, it is only applicable when the initial domain can be 
described in analytic form. An alternative procedure is possible which in certain 
circumstances again allows the problem to be reduced exactly to the solution of 
a finite system of algebraic equations but which, in general, can be used with an 
associated approximation scheme to effect a similar reduction. 

Since f(6) is analytic in 161 < 1, and vanishes at  the origin, we may there repre- 
sent it by the series 

W 

f(6) = C an!?. (6.1) 

c, = n~mama,...a,~m,n,...,r, (6.2) 

n=l 
From (3.2) we find that 

where there are N + 1 indices, m, n, . . ., r ,  and the summation takes each of these 
indices from 1 to 00. 

If, now, the mapping (6.1) happens to be a h i t e  sum, say a polynomial of 
degree m so that a, = 0 for n > m, it then follows that C, = 0 for n 2 m. More- 
over, the infinite sums of (6.2) become finite. Hence, if the initial domain is such 
that it is mapped to the unit circle by a polynomial, we may readily determine 
the initial moment constants from (6.2). Except for C,, whichincreases by a known 
amount, the remainder are invariant, so the mapping at  a later time will again 
be a polynomial of the same order as initially. The coefficients are determined by 
the finite system obtained by taking those relations of the form (6.2) which are 
non-vacuous, using the up-dated value of C,. (As before, some condition must 
be imposed to fix the orientation of the circle in the <plane: for example, we may 
choose a, to be real and positive.) 

Generally, the initial mapping will not be exactly a polynomial, but we can 
approximate a general mapping as such and adopt the above procedure again. 
In  this case, given the initial domain, one can determine the C, from (3.2), 
by numerical integration if necessary, followed by a determination of the 
coefficients from the system obtained in (6.2). Using this routine, one can check 
the error introduced by employing a polynomial of the degree chosen by com- 
paring the approximate initial domain these coefficients produce when intro- 
duced into (6. I) with the initial domain being approximated. 
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7. Concluding remarks 
As was noted in the introduction, the problems analysed in this paper arose 

from a desire to understand some of the phenomena associated with the more 
complex injection moulding process. The fact that the motion in the present 
case is controlled by a simple system of invariants is encouraging, and suggests 
that a similar approach to problems including interactions with side walls in the 
mould may be fruitful. 

Although the situation discussed here is not the one of primary interest, 
the invariance of the moment constants, allowing the problem to be posed in 
a simple mathematical form, provokes a number of questions of a more academic 
nature. Some of those connected with the moment problem as such are raised 
at  the end of 8 3, but there are others more closely connected with the physical 
probIem. One can easily envisage an initial simply connected domain having 
a spiral character which would be such that injection eventually brings two 
free boundaries together, thus producing a multiply connected region. (At which 
point, a different solution scheme is needed, of course.) One might ask for the 
conditions to be imposed on an initial domain to ensure that it remains simply 
connected. One feels that a condition of star-likeness with respect to the injection 
point would be sufficient, but certainly not necessary. 
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